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Abstract

We present a detailed numerical study of the interaction of a weak shock wave with an isolated

cylindrical gas inhomogeneity. Such interactions have been studied experimentally in an attempt to

elucidate the mechanisms whereby shock waves propagating through random media enhance mix-

ing. Our study concentrates on the early phases of the interaction process which are dominated

by repeated refractions and re
ections of acoustic fronts at the bubble interface. Speci�cally, we

have reproduced two of the experiments performed by Haas and Sturtevant: a MS = 1:22 planar

shock wave, moving through air, impinges on a cylindrical bubble which contains either helium or

Refrigerant 22. These 
ows are modelled using the two-dimensional, compressible Euler equations

for a two component 
uid (air-helium or air-Refrigerant 22). Although simulations of shock wave

phenomena are now fairly commonplace, they are mostly restricted to single component 
ows. Un-

fortunately, multi-component extensions of successful single component schemes often su�er from

spurious oscillations which are generated at material interfaces. Here we avoid such problems by

employing a novel, nonconservative shock-capturing scheme. In addition, we have utilized a sophis-

ticated adaptive mesh re�nement algorithm which enables extremely high resolution simulations to

be performed relatively cheaply. Thus we have been able to reproduce numerically all the intricate

mechanisms that were observed experimentally (e.g. transition from regular to irregular refraction,

cusp formation and shock wave focusing, multi-shock and Mach shock structures, jet formation etc.),

and we can now present an updated description for the dynamics of a shock-bubble interaction.
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1 Introduction

In an extremely lucid paper, Haas and Sturtevant (1987) presented an experimental study of the

interaction of weak shock waves with isolated inhomogeneities that took the form of either spherical

or cylindrical bubbles. They argued that idealized experiments were necessary to shed light on the

complex phenomenological behaviour whereby shock waves propagating through random media can

alter the structure of 
uid inhomogeneities. To this end, their experiments were a resounding suc-

cess. A number of shadowgraphs were produced which provide much insight into several important

mechanisms such as transition from regular to irregular refraction, folding processes, shock wave

focusing, distortion of the bubble interface and vortex formation. However, given the nature of the

experiments, certain subtleties of the interaction process were inevitably left unexplained. Note that

such experiments are extremely di�cult to control since they are conducted under imperfect condi-

tions. For example, di�usion occurs across the membrane that forms the bubble interface and so the

precise properties of the gas inhomogeneity are not known (Abd-El-Fattah & Henderson 1978a,b).

Moreover, when the shock impinges on the bubble the membrane does not always rupture cleanly

and it can interfere with the 
ow (Rupert 1992), as does the support structure needed to hold the

bubble in place. There are also di�culties with the repeatability of the experiment due to variations

in the incident shock strength (Haas & Sturtevant 1987), and problems with the interpretation of the


ow visualization images due to unwanted three-dimensional e�ects (Wang & Widhopf 1990). Other

problems arise in that certain quantities of interest cannot be measured directly either because of

their intrinsic nature (e.g. vorticity) or because of practical limitations in the experimental setup.

Given this background, the purpose of the present study was to explore the extent to which a

modern computational method could complement the experiments of Haas and Sturtevant (1987)

in elucidating the basic mechanisms that govern the propagation of shocks through nonuniform

gases. Additionally, it was thought that such a study could help bridge the gap between existing

theories of shock re
ection-refraction phenomena and experiment. For example, although Haas &

Sturtevant were able to use the theory of geometrical acoustics to gain a good understanding of

their experimental observations, this theory ignores wave nonlinearities and so it fails to account

for all 
ow features. Similarly, while von Neumann theory (1963) is exact, within its assumptions,

it cannot cope with regions of non-uniform 
ow and therefore it is not strictly applicable to shock

interactions at curved interfaces (Ben-Dor & Takayama 1985). On the other hand, Whitham's

theory (1957, 1958) and its extensions (Catherasoo & Sturtevant 1983, Schwendeman 1988) can

cope with curved interfaces, but the theory is approximate and it does not take proper account of

re
ected waves. Moreover, this approach cannot provide any details for the 
ow structure behind the

incident and refracted shock fronts. Hence the need for direct numerical simulations { simulations

provide a controlled environment in which to isolate genuine 
ow phenomenology from experimental

artifacts and they can provide global details of the 
ow dynamics to supplement the idealized,

local descriptions provided by theory. Indeed, for the case of shock refraction at a planar interface,

Henderson et al.(1991) have already demonstrated that careful simulations can be used to improve

the classi�cation of re
ection-refraction phenomena which arose from experiment and analysis (Abd-

El-Fattah & Henderson 1978a,b). Here we aim to shed more light on the refraction process at a

curved interface.

Haas & Sturtevant's experiments have already inspired several numerical studies. For example,
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both Picone & Boris (1988) and Yang et al.(1993, 1994) have performed computations aimed at

determining the long-time evolution of the bubble inhomogeneities, while L�ohner et al. (1987) have

investigated the early-time dynamics of the interaction process. However, in these earlier studies the


ow was modelled using a single gas rather than the exact binary system used by the experiment.

This simpli�cation, whilst expedient, inevitably reduced the accuracy of the results. Admittedly,

for the cases studied here the errors so introduced are not catastrophic and, to some extent, can be

tolerated. But these circumstances are fortuitous. Note that since some desired density jump must

be imposed across the bubble interface, with a single gas component model the bubble cannot be

in thermal equilibrium with its surroundings, as was the case with the experiments. Indeed, the

error in temperature will be arbitrarily large, dependent on the density ratio (for the air-helium

case studied here the temperature within the bubble would be 2.08 times too high). Now one of

the motivations for studying shock-bubble interactions is to investigate mechanisms whereby air

and fuel can be mixed e�ciently in the short transit times available with supersonic combustion

systems (Marble et al. 1987). Clearly, in such circumstances, gross errors in the temperature �eld

could not be tolerated. In addition to the shortcomings of the 
ow model, these previous studies

are under-resolved and are therefore prone to misinterpretation.

Our computational study avoids both of the above shortcomings. First, proper account is taken

of the separate gas components; the 
ow is modelled by the compressible Euler equations for a

two-component 
uid (air & helium or air & Refrigerant 22 (R22) depending upon the experiment

being simulated). Although this represents but a small generalization over the single component

case, most popular shock-capturing schemes do not perform satisfactorily for multi-component 
ows

in that they produce spurious oscillations at material interfaces (e.g. Abgrall 1988). Since such

numerical artifacts can have a signi�cant a�ect upon the evolution of a material interface, they

are to be avoided. Here we employ a somewhat novel scheme to avoid this numerical di�culty

(Karni 1994a). In essence, the scheme allows for a controlled conservation error so as to maintain

the correct pressure equilibrium between di�erent 
uid components. While this relaxation of strict

conservation runs against perceived wisdom in the design of numerical schemes for 
ows with shock

waves (Lax 1954, 1972), it does produce excellent results. Second, we overcome the shortcoming of

poor resolution by utilizing a sophisticated adaptive mesh re�nement scheme (Quirk 1991). This

scheme can reduce by several hundred-fold the cost of performing detailed simulations and so it

allows for simulations that would otherwise prove to be prohibitively expensive.

As will be shown in this paper, our computational machinery provides a means of producing

simulations which agree remarkably well with experiment. Since much of this machinery is general

purpose and could be pro�tably used to investigate other quite di�erent phenomena, we describe it

in some detail (although the minutiae are necessarily skipped).

The organization for the rest of this paper is as follows. In the next section we present the

compressible Euler equations for a two-component 
uid and we demonstrate that schemes which

are routinely applied in the single-component case do not work satisfactorily in this generalised

case. In x3 we describe the major components of our numerical method for simulating multi-

component 
ows, then in x4 we detail the computational set-up for the experiments that we have

simulated. This is followed by four sections of results and discussion. First, in x5 we present a

qualitative comparison against experiment concentrating on 
ow visualization. Then we present

two quantitative comparisons with experiment, one section deals with the velocities of certain key
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ow features, the other deals with the measurement of pressure traces at various locations along

the axis of 
ow symmetry. These comparisons are followed by a discussion on the production of

vorticity resulting from the passage of the shock through the bubble inhomogeneity. Although this

discussion goes beyond the main purpose of this paper it is pertinent to several recent studies aimed

at determining the long time evolution of the bubble. Finally, in x9 we close with some general

remarks concerning our numerical study.

2 Multicomponent Flows

We model multicomponent 
ows using the compressible Euler equations augmented by a requisite

number of species equations. For clarity, in this paper we focus on 
ows with only two components

and so we employ just a single species equation; the extension of our discussion to several components

follows straightforwardly.

In two-dimensions, using Cartesian coordinates (x; y), the governing equations may be written

in conservation form

Wt + F(W)x +G(W)y = 0

W =

0
BBBBBB@

�

�u

�v

E

�Y

1
CCCCCCA
; F(W) =

0
BBBBBB@

�u

�u2 + p

�uv

�u(E + p)

�uY

1
CCCCCCA
; G(W) =

0
BBBBBB@

�v

�vu

�v2 + p

�v(E + p)

�vY

1
CCCCCCA
:

(1)

Note that these equations are written in mixture form, � is the density of a binary mixture whose

mass fractions are Y for component one and 1�Y for component two. It is assumed that both 
uid

components are in pressure equilibrium and that they move with a single velocity whose components

are u and v in the x and y directions, respectively. This assumption of no velocity slip is reasonable

only if the density variation between components is moderate as is generally the case with two gases.

Here, E is the total energy of the mixture per unit volume. Both 
uid components are taken to be

perfect gases, with ratios of speci�c heat 
1 = Cp1=Cv1 and 
2 = Cp2=Cv2. Therefore, the pressure,

p, is given by

p = (
(Y ) � 1)(E �
1

2
�u2 �

1

2
�v2) (2)

where the e�ective 
 for the mixture depends on the species concentration, Y , and is found from

standard thermodynamic reasoning to be


(Y ) =

1Cv1Y + 
2Cv2(1� Y )

Cv1Y + Cv2(1� Y )
: (3)

It is well known that solutions to (1) may develop discontinuous shock fronts, across which the

governing equations are no longer valid in their di�erential form. Using Gauss's divergence theorem,

equation (1) may be recast into an integral form which remains valid at a shock

@

@t

Z Z
D

Wdxdy +

I
@D

Fdy �Gdx = 0 (4)
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and which can be used to deduce the Rankine-Hugoniot jump conditions (Courant & Friedrichs 1948).

Numerically, (4) may be discretized to produce a so-called conservative shock-capturing scheme in

which numerical approximations to the 
ux vectors F and G are used to evolve the �eld solution.

Over recent years a whole new industry has grown up around the problem of how best to compute

approximations to these numerical 
uxes (Roe 1986). Irrespective of the 
ux formulation, however,

a shock-capturing scheme necessarily results in a `viscous' shock pro�le which is smeared rather than

a perfect discontinuity (unless the discontinuity coincides with a cell interface). But it can be shown

that a conservative discretization ensures that a numerically captured shock, although arti�cially

smeared, has both the correct strength and speed; conversely, a nonconservative discretization may

give physically inconsistent solutions (Lax 1954,1972; Hou & Le Floch 1991).

Given this fundamental property, a conservative formulation is almost universally accepted as

the starting point for devising a shock-capturing scheme, and to date many successful schemes have

been so developed for single-component 
ows. However, a major obstacle in extending conservative

schemes to multi-component 
ows is ensuring that the correct pressure equilibrium is maintained

between 
uid components across a di�used material interface (e.g. Abgrall 1988; Colella et al. 1989;

Larrouturou 1991; Ton et al. 1991; Karni 1994a; Bell et al. 1994). This numerical di�culty is

illustrated in Figure 1. Even though each of the conserved variables might remain monotone across

the smeared interface, the pressure that corresponds to the arti�cial intermediate state di�ers from

the equilibrium pressure. Once generated such erroneous pressure 
uctuations can propagate and

contaminate the solution �eld. For example, Figure 2 (a) shows a snapshot from a one-dimensional,

conservative computation of a shock-bubble interaction where the start data is identical to the air-

helium case given in x4. Here the initial position of the bubble is marked by the vertical lines and

the computed pressure �eld is shown some time after the shock has passed through the bubble and

several re
ections and refractions have taken place. Spurious pressure oscillations are clearly visible.

For other sets of reasonable data, such oscillations get even larger. Now since material interfaces

can be physically unstable, even slight numerical perturbations can trigger completely incorrect

interfacial behaviour (Karni 1994b) and are therefore to be avoided. Note that in a reactive system

such pressure perturbations could signi�cantly alter the local release of chemical energy and so might

compound the error.

Density

Momentum

Energy

Pressure

Figure 1: Pressure 
uctuation at a material interface due to numerical di�usion.

Numerical problems with smeared interfaces can be avoided if fronts are �tted rather than
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(a) Conservative scheme (Roe 1982) (b) Primitive scheme (Karni 1994a)

Figure 2: Pressure pro�les for a one dimensional `shock-bubble' interaction.

captured (e.g. Grove & Meinko� 1990), but front �tting introduces its own di�culties. Here we

adopt an alternative approach and consider the governing equations in so-called primitive form. The

Euler system (1) in primitive form is given by

Ut +Ap(U)Ux +B
p(U)Uy = 0

U =

0
BBBBBB@

�

u

v

p

Y

1
CCCCCCA
; Ap(U) =

0
BBBBBB@

u � 0 0 0

0 u 0 ��1 0

0 0 u 0 0

0 
p 0 u 0

0 0 0 0 u

1
CCCCCCA
; Bp(U) =

0
BBBBBB@

v 0 � 0 0

0 v 0 0 0

0 0 v ��1 0

0 0 
p v 0

0 0 0 0 v

1
CCCCCCA
:

(5)

To see the advantages of this formulation, consider a planar material interface aligned in the x

direction with data such that @
@y
� 0. Across the interface, both the pressure, p, and the component

of velocity normal to the interface, u, are constant. It follows that locally the primitive system

reduces to three completely decoupled linear advection equations in �, v and Y and that both p and

u remain constant. Thus, any reasonable discretization of (5) can be expected to produce solutions

which are free of oscillations near the material interface, without introducing conservation errors.

Conservation errors, however, will occur near shocks and unless some measure is taken to control

them, a primitive variable formulation will prove inadequate. Building on an idea �rst proposed by

Zwas & Roseman (1973), Karni (1992) has developed a set of high-order correction terms which

can be used to remove leading order conservation errors so as to produce a `nearly' conservative,

primitive variable scheme. This novel scheme rests on two observations: (i) Numerically captured

shocks have `viscous' pro�les which are determined by the truncation error of the discretization

scheme. (ii) A conservative discretization produces a consistent `viscous' shock pro�le in the sense

that a captured shock has both the correct strength and speed. In essence, the present primitive

variable scheme employs correction terms so as to mimic the `viscous' shock pro�le of a conservative

scheme. In the next section, we outline the derivation of this scheme. But �rst, we demonstrate that

for the one-dimensional shock-bubble problem it produces oscillation free solutions, cf. Figure 2 (a)

and (b).
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3 Numerical Method

We now describe the major components of our numerical method for investigating the dynamics

of a shock-bubble interaction. These are: (i) the primitive variable discretization { this provides a

sound basis for the integration of multicomponent 
ows; (ii) the parallel, adaptive mesh re�nement

implementation { this is essential in order to resolve intricate 
ow features, whilst maintaining low

computational costs; (iii) graphical 
ow visualization { this facilitates the process of elucidating the

phenomena under investigation.

3.1 A Non-Conservative Shock-Capturing Scheme

Following Strang (1968), we employ dimensional splitting to integrate the system (5) with the

re�nement that correction terms are applied to the right hand side (RHS) of each split equation so

as to control conservation errors. Thus, we alternate between integrating

Ut +A
p(U)Ux =

�t

2
Dx and Ut +B

p(U)Uy =
�t

2
Dy: (6)

The precise form of the correction terms, Dx and Dy, depends upon the discretization for the left

hand side (LHS) of each split equation. We shall now derive the correction terms, Dx, assuming

that the LHS of the x-sweep operator has been discretized using Roe's �rst-order upwind scheme

(Roe 1982). In essence, this is done by comparing the x-sweep discretization for the primitive system

(5) with the analogous x-sweep discretization for the conservative system (1).

If Roe's scheme is used to solve (1), the scheme is a �rst-order approximation to (1) but it is a

second-order approximation to the equivalent equation

Wt +F(W)x =Wt +A
c(W)Wx =

�t

2

�
(jAcjWx)x

�
�Wtt

�
(7)

where � = �t=�x is the ratio of the time step and mesh size used for the integration and Ac is

the Jacobian matrix @F(W)

@W
. The RHS of (7) constitutes the leading order terms in the truncation

error of the scheme. To leading order, these dissipative terms determine the viscous path across the

numerical shock transition. In this case, the numerical viscous path is physically consistent since it

is produced by a conservative scheme and so it produces correct shock speeds and jumps.

Similarly, if Roe's upwind scheme is applied to solve equation (5), the scheme is a second-order

approximation to the equivalent equation

Ut +A
p(U)Ux =

�t

2

�
(jApjUx)x

�
�Utt

�
: (8)

In general, the two viscous forms (7) and (8) are di�erent. The former, arising from a conservative

discretization, yields shocks that satisfy the Rankine-Hugoniot conditions the latter does not. To

enforce consistent shock pro�les on the primitive solution, the di�erence between the two viscous

expressions (appropriately transformed) has to be added to the RHS of the x-sweep operator for the

primitive system to give (6) where

Dx =

�
T

�
(jAcjWx)x

�
�Wtt

�
�

�
(jApjUx)x

�
�Utt

��
(9)

and T is the conservative to primitive transformation matrix @U
@W

.
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If (6) is solved by Roe's upwind scheme, with its RHS (9) appropriately discretized, the solution

procedure is conservative to the order of the numerical approximation. The correction terms may

be written entirely in terms of the primitive variables

Dx =
T(T�1)xjApjUx

�
� T(T�1)tUt: (10)

Straightforward algebra shows that for the extended Euler system (5), the correction terms are

given by

Dx =

0
BBBBBBBBBBBBB@

0

1

2�

0
@c1�xux +

1
a2
c2uxpx + c4

�
�
a
u2x +

1
�a
px�x

�
�x

� 4�tut

1
A

1

2�

� 1
a2
c2pxvx + 4juj�xvx + c4

�

a
uxvx

�x
� 4�tvt

�

 � 1

2

�
c3�u

2
x +

1
a
c4pxux + 2juj�v2x
�x

� 2�
�
u2t + v2t

��
0

1
CCCCCCCCCCCCCA

(11)

where

c1 = ju� aj+ 2juj+ ju+ aj; c3 = ju� aj+ ju+ aj;

c2 = ju� aj � 2juj+ ju+ aj; c4 = ju� aj � ju+ aj

and a is the sound speed.

The following observations can be made:

1. If (5) is used to replace time derivatives by space derivatives, all terms within Dx are scaled

by either one or both of ux and px, hence Dx vanishes near contact surfaces. Consequently,

the correction terms, although derived for �rst-order upwinding, may also be used for second-

order upwinding without degrading the latter's superior resolution of contact surfaces (Karni

1992, 1994a). Note that such schemes often reduce to �rst-order accuracy near shocks anyway,

which is precisely where the correction terms come into play.

2. The correction terms are derived using asymptotic arguments based on the scheme truncation

error. Conservation errors, while signi�cantly reduced, are inherent to the method (Hou & Le

Floch 1991, Karni 1992) and are not completely eliminated.

3. The correction terms depend on the ratio � =
�t

�x
, and so some variation in their e�ect is to

be expected with changes in Courant number (wave speed � �). It is our experience that the

correction terms work best at Courant numbers close to one, which is the upper bound on the

size of time step for the integration process to be stable.

The correction terms for the y-sweep operator (6) may be similarly derived and are given by
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Dy =

0
BBBBBBBBBBBBBB@

0

1

2�

� 1
a2
c2pyuy + 4jvj�yuy + c4

�

a
uyvy

�y
� 4�tut

�

1
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0
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1
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1
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 � 1

2

 
c3�v

2
y +

1
a
c4pyvy + 2jvj�u2y
�y

� 2�
�
u2t + v2t

�!

0

1
CCCCCCCCCCCCCCA

(12)

where the coe�cients c1{c4 are the same as those in (11) but with u replaced by v.

Given the derivation of the correction terms, our basic method of 
ow integration is as follows.

The LHS for each split equation (6) is discretized using a second-order Roe scheme cast in 
uctuation-

and-signal form (Roe 1982). For the correction terms, temporal derivatives are replaced by spatial

derivatives which are then centrally di�erenced, and pointwise values take the cell-centred values

used by Roe's scheme. The correction terms contribute to cell-updates via a forward Euler time

integration. Thus the x-sweep operator of our `nearly' conservative primitive variable scheme takes

the form

Un+1
i = LRoex (Un

i ) + �t

�
�t

2
Dx(U

n
i )

�

where LRoex is the standard Roe evolution operator. The y-sweep operator follows by analogy, and

the two operators are alternated so as to arrive at a two-dimensional scheme (Strang 1968).

3.2 The AMR Algorithm { An Overview

The Adaptive Mesh Re�nement (AMR) algorithm is a general purpose scheme for integrating systems

of hyperbolic partial di�erential equations. It attempts to reduce the costs of integration by matching

the local resolution of the computational grid to the local requirements of the solution being sought.

For example, in simulations of gas dynamic 
ows, a �ne mesh is generally used only in the vicinity of

shock waves and other 
ow discontinuities, elsewhere a relatively coarse mesh is employed. Although

the computational savings which accrue from local mesh re�nement are totally problem dependent,

they are often signi�cant; savings of more than �ve hundred-fold have been obtained for simulations

of detonation phenomena (Quirk & Hanebutte 1993). The foundations of the AMR algorithm lie

with the work of Berger & Oliger (1984), but the derivative outlined here is due to Quirk (1991).

The AMR algorithm employs a hierarchical grid system. In the following, the term `mesh' refers

to a single topologically rectangular patch of cells and the term `grid' refers to a collection of such

patches. At the bottom of the hierarchy a set of coarse mesh patches delineates the computational

domain. These patches form the grid G0 and they are restricted such that there is continuity of

grid lines between neighbouring patches. This domain may be re�ned locally by embedding �ner

mesh patches into the coarse grid G0. These embedded patches form the next grid in the hierarchy,

G1. Each embedded patch is e�ectively formed by subdividing the coarse cells of the patches that

it overlaps. The choice for the re�nement ratio is arbitrary, but it must be the same for all the

embedded patches. Thus, by construction, the grid G1 also has continuity of grid lines. This process

of adding grid tiers to e�ect local re�nement may be repeated as often as desired, see Figure 3.
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From stability considerations, many numerical schemes have a restriction on the size of time step

that may be used to integrate a system of equations. The �ner the mesh, the smaller the allowable

time step. Consequently, the AMR algorithm re�nes in time as well as space. More but smaller

time steps are taken on �ne grids than on coarse grids in a fashion which ensures that the rate at

which waves move relative to the mesh (the Courant number) is comparable for all grid levels. This

avoids the undesirable situation where coarse grids are integrated at very small Courant numbers

given the time step set by the �nest grid's stability constraints: some schemes (e.g. Lax-Wendro�)

give poor accuracy for small Courant numbers.

The �eld solution on each grid is retained even in regions of grid overlap and so all grid levels

in the hierarchy coexist. The order of integration is always from coarse to �ne since it is necessary

to interpolate a coarse grid solution in both time and space to provide boundary conditions for its

overlying �ne grid. The various integrations at the di�erent grid levels are recursively interleaved

to minimize the span over which any temporal interpolation need take place. Periodically, for

consistency purposes, it is necessary to project a �ne grid solution on to its underlying coarse

grid. Figure 4 shows the sequence of integration steps and back projections for a three level grid

fG0; G1; G2g with re�nement ratios of 2 and 4.

The integration of an individual grid is extremely simple in concept. Each mesh is surrounded

by borders of dummy cells. Prior to integrating a grid, the dummy cells for every mesh patch in

the grid are primed with data which is consistent with the various boundary conditions that have to

be met. Each mesh patch is then integrated independently by an application dependent, black-box

integrator that never actually sees a mesh boundary. Thus, in principle, any cell-centred scheme

developed for a single topologically rectangular mesh can form the basis for the integration process.

In general it is necessary to adapt the computational grid to the changes in the evolving 
ow

solution and so the grid structure is dynamic in nature. Monitor functions based on the local solution

are used to determine automatically where re�nement needs to take place so as to resolve small scale

phenomena (Quirk 1991). For a simple example, Figure 5 shows several snapshots taken from the

simulation of a shock wave di�racting around a corner. Each snapshot shows the outlines of the

mesh patches which go to make the �nest grid. This grid clearly conforms to the main features of

the 
ow, namely the di�racted shock front and the vortex located at the apex of the corner (van

Dyke 1982). Although the changes in grid structure shown here are dramatic, many adaptions have

taken place between each frame. Note that while they might appear small, each mesh patch actually

contains several hundred cells. A large number of small grid movements occurs because the adaption

process dovetails with the integrations process, see Figure 4. Also note that the adaption always

proceeds from �ne to coarse so as to ensure that there is never a drop of more than one grid level at

the edge of a �ne grid to the underlying coarse grid. A grid adaption essentially produces a new set

of mesh patches which must be primed with data from the old set of patches before the integration

process can proceed. Where a new patch partially overlaps an old patch of the same grid level, for

the region of overlap, data may be simply shovelled from the old patch to the new patch. In regions

of no such overlap, the required �eld solution is found by interpolation from the underlying coarse

grid solution.

In a typical application the �nest grid will contain several hundred mesh patches. Thus, the mesh

patch is a su�ciently �ne unit of data for e�cient parallelism. The parallel AMR algorithm (Quirk

& Hanebutte 1993) is implemented using a Single Program Multiple Data (SPMD) model. Each
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Figure 3: The AMR algorithm employs a hierarchical grid system.

Grid Integration Time Step Projection Adaption

G0 �t
G1 �t=2

4�G2 4��t=8
G2 ! G1

G2

G1 �t=2
4�G2 4��t=8

G2 ! G1

G1 ! G0

G2

G1

Figure 4: Grid operations are recursively interleaved (to be read from top to bottom).

Figure 5: The AMR algorithm employs a dynamic grid system.
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processing node executes the basic serial algorithm (Quirk 1991) in isolation from all other nodes,

except that at a few key points messages are sent between the nodes to supply information that

an individual node deems to be missing, that is o�-processor. For example, during the integration

of a grid, the only point at which a processor needs to know about other processors is during the

priming of the dummy cells. Whereas in a serial computation all data fetches are from memory,

for a parallel computation some are from memory and some necessitate receiving a message from

another processor. Each time the grid adapts, the algorithm generates a schedule of tasks that have

to be performed so as to prime correctly the dummy cells of a given grid. If running in parallel,

this schedule is parsed to produce a schedule of those tasks that necessitate o�-processor fetches.

At which point, individual processors can exchange subsets of their fetch schedules, as appropriate,

so that every node can construct a schedule of messages that it must send out at some later date.

Thus, the priming process is carried out in two phases. First, all the local data fetches are performed

as for the serial case. Second, each node sends out the data that has been requested of it. The node

then waits for those data items it has requested. For each incoming message it can readily determine

from its own schedules what to do with the o�-processor data, and so the order in which messages

arrive is unimportant. The adaption process and the back projection of the �eld solution between

grid levels also necessitate sizeable amounts of communication, these are handled in a similar fashion

to the priming of the dummy cells.

The problem of load balancing the AMR algorithm rests on determining the best distribution

of the new patches amongst the processing nodes before the new �eld solution is interpolated from

the old �eld solution. Currently, this is done using heuristic procedures (Quirk 1994b) which bear

strong similarities to classical `Bin Packing' algorithms (Graham 1969) with the added complication

that they must account for the communication costs of data transfer between nodes.

3.3 Flow Visualization Images

In x5, in order to make a qualitative comparison between our numerics and experiment, we present a

number of schlieren-type images (Liepmann & Roshko 1957). Such images are useful for identifying

weak features which are often lost within contour plots. It should be appreciated that the sensitivity

of our numerical images exceeds that which can be obtained experimentally and so there is little to

be gained from trying to match exactly the experimental images as some other applications might

warrant. Instead we have simply tried to elicit the maximum amount of information possible from

our numerical results. Despite their simplicity, our schlieren-type images provide a very e�ective

means of assimilating the various mechanisms that comprise shock refraction phenomena.

The plots shown in Figures 7 and 9 depict the magnitude of the gradient of the density �eld,

jr�j =

s�
@�

@x

�2

+

�
@�

@y

�2

;

and hence they may be viewed as idealized schlieren images; the darker the image the larger the

gradient. The density derivatives were computed using straightforward central-di�erencing, and the

following nonlinear shading function, �, was used to accentuate weak 
ow features,

� = exp

�
�k

jr�j

jr�jmax

�
;

11



where k is a constant that took the value 600 for the light 
uid and 120 for the heavy 
uid. Us-

ing a 24 bit colour graphics system the grey shades outside the bubble were produced using the

< R;G;B > triplet < 255�; 255�; 255� >, and the shades within the bubble were produced using

< 204�; 204�;255�>.

We also present a number of realistically lit surface plots, see Figures 8,10 and 15, which are

useful for determining the strengths of certain 
ow features. But lack of space prevents us from

describing how these plots were produced.

4 Computational Set-up

For our investigation of the dynamics of a shock-bubble interaction we have reproduced numerically

two of the experiments performed by Haas & Sturtevant (1987). Namely, the interactions of a

MS = 1:22 planar shock wave, moving through air, with a cylindrical bubble of either helium or

Refrigerant R22 (CHClF2). Whereas the helium bubble is lighter than the surrounding air and

so acts as a divergent acoustic lens, the R22 bubble is heavier and therefore acts as a convergent

acoustic lens. As will be seen in x5, these two cases lead to very di�erent 
ow behaviour.

In the experiments the bubbles were produced by in
ating a cylindrical former whose walls were

made from a very thin membrane of nitrocellulose. Thus good control was exercised over the shape

of the bubble and the resultant 
ows were almost two-dimensional, and so our computations which

are two-dimensional can be expected to mimic the experiments fairly closely. Haas & Sturtevant

produced three sets of results: (i) 
ow visualization in the form of spark shadowgraphs; (ii) velocities

for certain key 
ow features; (iii) pressure traces measured at points downstream of the bubble along

the axis of 
ow symmetry. We have produced similar sets of results from our simulations. However,

it should be appreciated that the experimental results (shadowgraphs and velocities), unlike their

computational counterparts, represent a compilation from a series of runs for each bubble case.

Only a single spark shadowgraph could be taken from each run, and so the complete record was

formed by repeating the experiment with di�erent delay times to the exposure of the shadowgraph

image. While this method produced excellent images, the accuracy of the velocity measurements

necessarily su�ered: since each measurement is derived from a sequence of images it is sensitive to

the repeatability of the experiment. The general uncertainty in the velocity measurements is thought

to be 11%, with the exception of a few instances for which it is thought to be as large as 30% (Haas

& Sturtevant 1987).

A schematic of our computational set-up is shown in Figure 6. We have assumed that the 
ow

�eld is symmetric about the axis of the shock tube and so only the top half of the 
ow �eld (ABCD)

was computed. The following boundary conditions were applied to the 
ow domain: sides BC and

DA were treated as solid walls using a standard re
ecting boundary procedure (Quirk 1991); the

in
ow along side CD was speci�ed using the exact 
ow conditions behind the incident shock wave;

zeroth-order extrapolation was used along the side AB. Note that neither the upstream nor the

downstream boundary treatment is critical since no physical waves reach these boundaries. Of more

relevance are the so-called `start-up' errors which are generated when a shock smears to its natural

pro�le given an exact discontinuity as starting conditions (Hillier 1991). It is for this reason that

the incident shock was placed some distance to the right of the bubble so that these errors, which

manifest themselves as a pair of low frequency waves moving on the passive characteristics (Quirk

12



1991), would not have a chance to interfere with the shock-bubble interaction process.

All gas components were modelled as perfect gases; the appropriate values for the ratio of

speci�c heats 
, the gas constant R, and the constant volume speci�c heat capacity CV , used for the

simulations are given in Table 1. The initial 
ow �eld was determined from standard shock relations

given the strength of the incident shock wave (MS = 1:22), taking the density and pressure of the

quiescent 
ow ahead of the shock to be unity. The bubble was assumed to be in both thermal and

mechanical equilibriumwith the surrounding air, therefore its initial density was simplyRair=Rbubble.

For the helium bubble case, it was assumed that the contamination of helium with air was 28% by

mass as indicated by Haas and Sturtevant (1987). As can be seen from Table 1, this modi�es the gas

properties substantially. Given the experiences of Henderson et al. (1991), no attempt was made

to model the e�ects of the membrane which was needed in the experiment to separate the two gas

components. Therefore, ahead of the shock, each mesh cell was simply initialised with one of two

states depending on whether its centre lay inside or outside of the bubble.

A

B C

D

Cyli
ndr ical Bubble

In
ci

de
nt

 S
ho

ck

Ms

890 mm

50 mm 222.5 mm 222.5 mm

89 mm

Figure 6: A schematic of the computational domain (not to scale).

Gas 
 R CV

Component kJ/kg K kJ/kg K

air 1:4 0:287 0:72

R22 1:249 0:091 0:365

He 1:67 2:08 3:11

He+28% air 1:648 1:578 2:44

Table 1: Gas properties for the simulations.

The computational domain was discretized using 20 coarse mesh patches each of which formed

a square of 50 by 50 cells. Additionally, two levels of re�nement were used, both with a re�nement

factor of 4, in order to resolve 
ow details. Thus the e�ective computational grid is equivalent to a

uniform mesh of 16,000 by 800 cells with a spatial resolution of 0.056 mm. Both simulations were

run as parallel computations on a small cluster of workstations (8 Sun Sparc10 Model 51s) and took

two evenings each to complete. In this paper, we make no claims as to the computational e�ciency

of our numerical method, but it is sobering to consider that for the R22 bubble computation the

equivalent uniform mesh calculation would require 3:26�1011 cell updates (16�1; 592 iterations on
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a mesh 16,000 by 800 cells). For our 
ow solver, a single processor of a CRAY Y-MP might manage

one cell update every 10�s in which case it would need 905 hours to run the simulation. Brute force

computations on super computers do not represent a sensible option for investigations of shock wave

phenomena.

5 Results and Discussion: Flow Visualization

In this section we present a number of 
ow visualization images which reveal certain subtleties of the

shock-bubble interactions which were not apparent from either the experiment or previous numerical

studies.

5.1 R22 Bubble { Convergent Case

Figure 7 shows a sequence of schlieren-type images from the simulation of the R22 bubble case, by

way of comparison, the corresponding sequence of experimental images is also shown. Pleasingly,

the simulation clearly reproduces all the salient features of the interaction. In order to bring out the

quality of the simulation, and to show how it complements the experiment, we shall now describe

this interaction in some detail. But �rst, so as to interpret correctly the images which follow, recall

that the incident shock is moving from right to left and note that the original position of the bubble

is marked by a light circle in the numerical images and by what looks like a dark circle with a

T-shaped support in the experimental images.

Frame (a) of Figure 7 shows a view of the R22 bubble some 55�s after it is �rst hit by the incident

shock wave from which it can be seen that the bubble has already undergone a slight deformation.

What remains of the incident shock appears as two short vertical line segments near the top and

bottom of the bubble. These segments are joined by a curved refracted shock which runs inside the

bubble and a curved re
ected shock which lies outside the bubble. A one-dimensional analysis for

the precise moment the incident shock hits the bubble suggests that the re
ected shock is 6:4 times

weaker than the refracted shock. An appreciation of the relative strengths of these two waves can be

gained from the surface plots for the density and pressure �elds (Figure 8 (a)); the re
ected wave is

so weak it is hardly discernible. Note that the refracted shock lags behind the incident shock because

the sound speed inside the bubble is lower than that outside the bubble. Haas and Sturtevant (1987)

observed that the refracted shock is slightly thickened at its two endpoints, but no explanation was

given as to why this was so. From the surface plots it is clear that the refracted shock is slightly

weaker at its endpoints, both the pressure and density surfaces appear slightly chamfered. Thus the

thickening is indicative of a compression system that matches the pressure jumps between the weak

and strong parts of the refracted shock.

As time moves on, the di�erence in sound speeds between the bubble and the surrounding air

becomes more apparent, and by 115�s (Figure 7 (b)) the refracted shock has folded such that two

side limbs now run roughly normal to its central portion. The surface plots of the density and

pressure �elds for this time instant (Figure 8 (b)) reveal that each side limb varies markedly in its

strength. In essence, for the 
ow inside the bubble, the air-R22 interface forms a concave ramp.

Thus a series of compression waves are required to turn the 
ow through almost ninety degrees:

each side limb is nearly horizontal and so the induced 
ow is vertical, but the induced 
ow behind
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the central portion of the refracted shock is largely horizontal. Note that the two segments of the

incident shock have started to di�ract around the downstream half of the bubble, and that the

bubble interface shows signs of incipient roll-ups where vorticity has been generated by the passage

of the incident shock wave. Now since the 
ow model is inviscid, the development of these roll-ups

will be controlled by vestigial numerical di�usion and so will depend upon the resolution of the

computational grid. Nevertheless such roll-ups are qualitatively realistic and it is doubtful whether

a viscous 
ow model would improve matters since a prohibitively �ne mesh would be required to

resolve the appropriate scales accurately.

By 135�s the system of compression waves which turns the 
ow around each of the two bends

in the refracted shock has steepened and is clearly visible in the surface plots for the density and

pressure �elds (Figure 8 (c)). Thus the refracted wave does not extend beyond its junction with the

side limbs as was suggested by L�ohner et al. (1988). Whilst the thickening of the refracted wave

shows up muchmore starkly in the experimental shadowgraphs than it does in the numerical schlieren

images, it should be remembered that an experimental shadowgraph represents an integration of the

curvature of the density �eld across the entire width of the shock tube facility used to perform

the experiment. Consequently, any small three-dimensionality in the 
ow �eld will subtly alter

the recorded image in ways that are not always easy to fathom. Here we believe the exaggerated

thickening is one such experimental artifact. Because, referring to Figure 7 (c), within the upper

of the two thickened limbs that appear in experimental image it is just possible to make out a line

which matches the front shown by the numerical image.

Other artifacts of the experiment are much more obvious and so do not cause undue confusion.

For example, it is clear from Figure 7 (c) that the bubble's support structure gave rise to a number

of spurious waves. As did the walls of the shock tube, but we model re
ections from the tube's walls

and so these particular waves also appear in the numerical images. Looking beyond the present

study, it would be interesting to perform a series of simulations to determine what in
uence such

blockage e�ects have on the dynamics of interaction process.

Figure 7 (d) shows that by 187�s the refracted shock has almost been focused down to a point.

The increase in peak pressure caused by this focusing is seen in the corresponding surface plots

(Figure 8 (d)); at this time, the peak pressure is 2:1 times larger than the expected pressure behind

an MS = 1:22 shock wave. Outside the bubble, the top and bottom segments of the incident shock

wave have now crossed, following their di�raction around the downstream half of the bubble, and

two weak contact discontinuities are now visible. These contacts separate regions of 
uid that have

been induced into motion by either the di�racted part or the undisturbed part of the incident shock

wave. The re
ected shocks from the top and bottom walls of the shock tube have now started

to pass through the bubble. Again these shocks lag behind their counterparts outside the bubble

because of the di�erence in the sound speeds between the light and heavy 
uids. The roll-ups along

the bubble interface have become much more pronounced and are very prominent in the surface

plot for the pressure �eld where they appear as tiny scallops (Figure 8 (d)). Note that the passage

of the top and bottom re
ected shocks through the corrugated bubble interface has given rise to a

number of cylindrical acoustic waves which then recombine to form a shock in a manner reminiscent

of Huygen's front reconstruction.

Once the refracted shock has been focussed it emerges from the downstream interface to become

a transmitted wave which is cylindrical (Figure 7 (e)). The downstream interface of the bubble
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necessarily aligns itself with the resultant velocity �eld which is almost radial and so it takes on

a wedge-like shape. Note that the cylindrical transmitted wave is in the stages of catching up the

two di�racted segments of the incident shock front. Although the agreement between experiment

and computation is poor at this moment in time, it is worth remembering that each shadowgraph

was produced from a separate experimental run. Therefore, the fact that we are generally able to

match our numerical schlierens so closely to the shadowgraphs is testimony to the repeatability of

the experiment. In this one instance, it would appear that the experimental run was relatively poor

and that the gross features of the computation are correctly positioned.

If there is any criticism of the simulation, it should be directed at a few subtle shortcomings

on the small scale. For example, the two-pronged feature emanating from the left-hand side of the

bubble (Figure 7 (e) onwards), seems unduly exaggerated in our simulation. This feature is caused

by a narrow jet of 
uid which is shot forward during the focusing of the refracted wave. As yet,

we cannot categorically state the cause of this exaggeration. It is probably due to the lack of real

viscosity in our 
ow model. In the experiment viscosity causes the jet to spread thus reducing its

range of in
uence. In the simulation, which is inviscid, any spreading of the jet is simply down to

residual numerical di�usion. Given the resolution of our computation, this residual di�usion is very

small and so the spreading of the jet will be underdone giving it an exaggerated range of in
uence.

However, it is conceivable that the exaggeration is yet another obscure numerical failing of the type

catalogued by Quirk (1994a).

By 342�s the bubble has moved appreciably from its original position and it has started to

elongate (Figure 7 (g)). Inside the bubble there is a backward moving shock which was born from

the internal re
ection of the refracted shock from the downstream interface. In the numerical image a

number of weaker waves are also apparent, these are caused by waves which pass through the bubble

because of re
ections from the walls of the shock tube and which subsequently lead to other internal

re
ections from the bubble interface. Outside the bubble, the transmitted wave has re
ected from

the walls of the shock tube. Interestingly, as can be seen from the surface plots for this time (Figure

7 (g)), spikes in the pressure and density �elds still persist where the transmitted wave intersects

the bubble interface. The apparent feathering of the transmitted shock is due to its passage over

what is now a corrugated surface given the many roll-ups along the bubble interface.

The internally back-re
ected shock wave eventually emerges from the upstream interface to

become a backscattered wave (Figure 7 (h)). While the waves resulting from the re
ection of the

transmitted shock from the top and bottom walls of the shock tube in their turn start to pass

through the bubble, further promoting the generation of vorticity along the interface. The bubble

continues to elongate and by much later times it evolves into a large vortex pair (Figure 7 (h)). For

these late times, when viscous e�ects might be expected to dominate proceedings, it is remarkable

that an inviscid simulation gives such qualitatively good agreement with experiment.
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Experiment Computation

Figure 7: Numerical schlieren images and experimental shadowgraphs (Haas & Sturtevant

1987) from the interaction of an MS = 1:22 shock wave moving from right to left over an

R22 cylindrical bubble. Times: (a) 55 �s, (b) 115 �s, (c) 135 �s, (d) 187 �s, (e) 247 �s.
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Experiment Computation

Figure 7: (Contd.) Numerical schlieren images and experimental shadowgraphs (Haas &

Sturtevant 1987) from the interaction of an MS = 1:22 shock wave moving from right to

left over an R22 cylindrical bubble. Times: (f) 318 �s, (g) 342 �s, (h) 417 �s, (i) 1020 �s.

Experimental images c
Cambridge University Press 1987. Reprinted with permission of

Cambridge University Press.
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Pressure Density

Figure 8: Surface plots of the density and pressure �elds for the interaction of anMS = 1:22

shock wave with an R22 cylindrical bubble. Times: (a) 55 �s, (b) 115 �s, (c) 135 �s.
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Pressure Density

Figure 8: (Contd.) Surface plots of the density and pressure �elds for the interaction of an

MS = 1:22 shock wave with an R22 cylindrical bubble. Times: (d) 187 �s, (e) 247 �s, (g)

342 �s.
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5.2 Helium Bubble { Divergent Case

Figure 9 shows a sequence of schlieren-type images from the simulation of the Helium bubble case,

again the simulation reproduces all the features of the shock-bubble interaction process.

Figure 9 (a) shows a view of the helium bubble 32 �s after it is �rst hit by the incident shock

wave. As before, there is a curved refracted shock which lies inside the bubble, however, since the

helium has a higher sound speed than the surrounding air (aair=aHe = 0:35), the refracted shock now

moves ahead of the incident shock. Outside the bubble, the curved re
ected wave is neither a simple

shock nor a simple expansion wave. A one-dimensional analysis for the precise moment the incident

shock hits the bubble suggests that the re
ected wave should be a weak expansion (the density jump

across this wave is 19% of the density jump between the undisturbed bubble and the surrounding

air). Indeed, the surface plots for the pressure and density �eld con�rm that this expectation is

true near the axis of 
ow symmetry(Figure 10 (a)). However, away from this axis there is very little

deformation of the bubble and the point of re
ection acts as a solid surface giving rise to a re
ected

shock. Behind this shock there is an expansion system which accounts for the lower pressure to be

found behind the rest of the re
ected wave due to the collapse of the bubble.

The di�erence in sound speeds between the bubble and the surrounding air becomes more ap-

parent by 52 �s (Figure 9 (b)) where the refracted shock has run well ahead of the incident wave.

A four shock con�guration has formed which Henderson et al. (1991) have termed twin regular

re
ection-refraction (TRR). A schematic for this shock con�guration is shown in Figure 11. Given

the relative positions of the four shocks no discernible contact discontinuity emanates from their

intersection point as would be expected in the general case; although one does become visible by 72

�s (Figure 9 (d)). Around 62 �s (Figure 9 (c)) the refracted wave emerges from the left-hand side

of the bubble to become the transmitted wave and the resultant internally re
ected wave appears as

two cusps. As can be seen from Figure 9 (d), this re
ected wave is convergent and is being focused

along the axis of the bubble but the local increase in pressure is quite small (Figure 10 (d)). By

82 �s (Figure 9 (e)) the internally re
ected waves have crossed and are now diverging, here they

appear as a small loop. The two branches of the transmitted shock have also now crossed. At 102 �s

(Figure 9 (f)), along the axis of 
ow symmetry the side shock and the transmitted shock have almost

merged. Meanwhile, both the original re
ected wave and the transmitted shock have re
ected from

the walls of the shock tube. Interestingly, as can be seen from Figure 10 (f), such spurious re
ections

can lead to large increases in local pressure. Here the foot of the incident shock, where it meets

the shock tube's walls, is reinforced substantially. This spike then proceeds to move away from the

wall and eventually interacts with the bubble. At this time, what remains of the incident shock

has just started to di�ract around the downstream side of the bubble, and the internally re
ected

wave has emerged from the upstream interface as a weak back scattered wave. This has resulted in

a very weak internally re
ected wave, so weak in fact that it does not appear in the experimental

images. As time moves on, the bubble becomes kidney shaped and spreads laterally in the process

(Figure 10 (g)). This change in shape is driven by vorticity generated at the edge of the bubble due

to the passage of the shock which induces a jet of air along the axis of 
ow symmetry. When this

jet impinges on the air at the downstream edge of the bubble, which is less easily displaced than

the lighter helium, it spreads laterally and the bubble forms a pair of distinct vortical structures

(Figure 10 (i)).

21



Experiment Computation

Figure 9: Numerical schlieren images and experimental shadowgraphs (Haas & Sturtevant

1987) from the interaction of an MS = 1:22 shock wave moving from right to left over a

Helium cylindrical bubble. Times: (a) 32 �s, (b) 52 �s, (c) 62 �s, (d) 72 �s, (e) 82 �s.
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Experiment Computation

Figure 9: (Contd.) Numerical schlieren images and experimental shadowgraphs (Haas &

Sturtevant 1987) from the interaction of an MS = 1:22 shock wave moving from right to

left over a Helium cylindrical bubble. Times: (f) 102 �s, (g) 245 �s, (h) 427 �s, (i) 674 �s.

Experimental images c
Cambridge University Press 1987. Reprinted with permission of

Cambridge University Press.
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Pressure Density

Figure 10: Surface plots of the density and pressure �elds for the interaction of anMS = 1:22

shock wave with an He cylindrical bubble. Times: (a) 32 �s, (b) 52 �s, (c) 62 �s.
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Pressure Density

Figure 10: (Contd.) Surface plots of the density and pressure �elds for the interaction of

an MS = 1:22 shock wave with an He cylindrical bubble. Times: (d) 72 �s, (f) 102 �s, (g)

245 �s.
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Figure 11: Schematic for twin regular re
ection-refraction (TRR).

6 Results and Discussion: Velocities

The results from the previous section clearly indicate that our simulations are qualitatively correct,

however, any serious numerical investigation should contain some form of validation exercise. Here,

this included a quantitative check on the velocities of several prominent 
ow features. For each

simulation, the positions of certain features were digitized from a sequence of schlieren-type images.

Using these measurements, x�t diagrams were then constructed so as to �nd the velocities. Whereas

the experimentally measured velocities had an estimated uncertainty of 11%, here the uncertainty

is much smaller. A shock might be smeared over 3 mesh cells, therefore given the resolution of

the computational grid its location can be determined to within �0:17 mm. This equates to an

uncertainty of less that 1% in the worst case velocity measurement. The uncertainty in velocity due

to conservation errors is also small at less than 3%.

6.1 R22 Bubble { Convergent Case

The x� t diagram for the shock interaction with the R22 cylindrical bubble is shown in Figure 12.

Also shown in this �gure is a schematic which identi�es the various 
ow features that have been

digitized. A comparison of our computed velocities with their experimentally measured counterparts

(Haas & Sturtevant 1987) is given in Table 2. The agreement between the two sets of results lies well

within the given 11% experimental error; the worst case (VT ) is just 5.8%. Note that we have ignored

the large discrepancy for Vdi since the experimental value appears to have been tabulated incorrectly;

the experimental x � t diagram indicates that Vdi is close to 130 m/s which is in fair agreement

with the computation. Overall, the general agreement between the two sets of velocities con�rms

the experimentalists' view that the contamination of R22 by air was so small (they estimated it at

3.4 % by mass) as to be negligible.

6.2 Helium Bubble { Divergent Case

The x � t diagram for the shock interaction with the helium bubble is shown in Figure 13, and

a comparison with experiment is made in Table 3. As with the R22 case, the two sets of results

are in close agreement. However, the e�ects of air contamination are now signi�cant. As detailed
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in Section 4, we have assumed that the contamination of helium by air is 28% by mass. If no

account is taken of contamination, the velocity results are very di�erent even though the 
ow remains

qualitatively similar. For example, the velocity VR with 28% contamination is 943 m/s, alternatively,

with zero contamination it is found to be 1073 m/s; an increase of 13:5%. The correction for

contamination necessarily assumes that the air and helium are homogeneously mixed. Since this

would not have been the case in the experiment, our correction can only be viewed as accounting

for the gross a�ects of contamination.

Note that all the measured 
ow features move more or less at constant velocity; in Figure 13,

the kink in the x� t path of the incident shock front near x = 40 mm corresponds to the point at

which the incident shock is engulfed by the curved transmitted shock wave.
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Figure 12: x� t diagram for the R22 cylinder case with a schematic showing the points used

to construct the diagram. Key: Vs { incident shock; VR { refracted shock; VT { transmitted

shock; Vui, Vuf { upstream edge of bubble, initial and �nal times; Vdi, Vdf { downstream

edge of bubble, initial and �nal times.

Velocity Vs VR VT Vui Vuf Vdi Vdf

Computation 420 254 560 70 90 116 82

Experiment 415 240 540 73 90 78 78

% Discrepancy +1:2 +5:8 +3:7 �4:1 +0:0 N/A +5:1

Table 2: A comparison of the computed velocities for the R22 cylinder case with those

measured experimentally by Haas and Sturtevant (1987); for key, see Figure 12.
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Figure 13: x� t diagram for the He cylinder case with a schematic showing the points used

to construct the diagram. Key: Vs { incident shock, VR { refracted shock, VT { transmitted

shock, Vui { upstream edge of bubble, Vdi { downstream edge of bubble, Vj { air jet head.

Velocity Vs VR VT Vui Vdi Vj

Computation 422 943 377 178 146 227

Experiment 410 900 393 170 145 230

% Discrepancy +2:9 +4:8 �4:1 +4:7 +0:7 �1:3

Table 3: A comparison of the computed velocities for the He cylinder case with those measured

experimentally by Haas and Sturtevant (1987); for key, see Figure 13.

7 Results and Discussion: Pressure Traces

In addition to producing shadowgraphs, Haas and Sturtevant recorded pressure histories at several

stations along the axis of 
ow symmetry so as to build up a more complete picture of the shock-

bubble interaction process. For example, in the heavy bubble case, they noted that the di�racted

wave generated a smooth pressure disturbance at a measuring station 3 mm downstream of the

initial bubble position, and not a discontinuous disturbance as might be expected from a shock

wave. In fact, as was shown in x5, the di�racted front barely constitutes a shock wave in the vicinity

of the bubble interface: the surface plots in Figure 8 reveal that along the interface the pressure �eld

ramps up gradually behind the di�racted wave and is not discontinuous, hence the smooth nature

of the measured disturbance.

Although the experimental pressure traces only provide a local view of events and so are not as

informative as the present pressure surfaces, it was hoped that they could be used to provide further

28



quantitative evidence as to the accuracy of the simulations. Unfortunately, the traces cannot be

relied upon to provide an accurate benchmark since the measuring process was invasive. A pressure

transducer was mounted on a movable endwall placed within the shock tube (Haas & Sturtevant

1987), thus the transducer actually measured the pressure disturbances for waves re
ecting o� the

endwall and not the local pressure as desired. Consequently, the transducer would be expected to

produce readings on the high side. This agrees with our �ndings. For example, the experiment gave

the peak pressure in the heavy bubble case as 7.7 bar, but the simulation suggests that it is close to

5.1 bar. Also, the experiment indicated that the long time pressure, once all the disturbances have

died away, to be about 2.2 bar. But this pressure should be close to the pressure behind aMS = 1:22

shock wave which is only 1.56 bar (the simulation gave the long time pressure to be 1.6 bar). Here,

the numerics provide a quantitative assessment of the errors introduced by the practicalities of the

experimental setup.

Although we cannot make a useful comparison against experiment, for completeness we present

the numerical pressure traces from the heavy bubble case, see Figure 14 below (cf. Figure 16 of

Haas & Sturtevant, 1987)
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Figure 14: Pressure histories for several stations downstream of the R22 cylinder.
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8 Results and Discussion: Vorticity Generation

Although it takes us beyond the main purpose of this paper, we can use our numerical results to

make some observations which are pertinent to several recent studies on shock-induced mixing: the

present two-dimensional, unsteady 
ow is analogous to a three-dimensional, steady 
ow that has

been proposed as a mechanism to ensure e�cient mixing of air and fuel in supersonic combustions

systems (Marble et al. 1987; Drummond & Givi 1994). Essentially, vorticity which is impulsively

generated by the passage of the shock through the bubble drives a mixing process which is reminiscent

of the Richtmyer-Meshkov instability (Richtmyer 1960; Meshkov 1970; Rupert 1992). Thus the

e�ectiveness of this type of mixing rests on the amount of vorticity generated during the early stages

of a shock-bubble interaction, therefore it would be useful to have a means of predicting the vorticity

produced from a given set of initial conditions.

The basic mechanism which produces the vorticity, !, is not in doubt. Recall that the vorticity

evolution equation, which is derived from the curl of the momentumequation, contains the baroclinic

torque term

r�

�
1

�
rp

�
:

This term may be recast so as to write the vorticity equation in the form

D!

Dt
= . . . +

1

�2
r��rp;

fromwhich it can be seen that vorticity is produced whenever there is a misalignment in the gradients

of the density and pressure �elds (Shercli� 1977). In the case of a shock-bubble interaction, such a

misalignment occurs because the propagating shock wave imposes a local pressure gradient which is

largely independent of the local density gradient imposed by the bubble inhomogeneity.

Several authors have devised simple analytic expressions which serve to predict the amount of

vorticity produced from an isolated shock-bubble interaction. Typically, this is done by making

enough simplifying assumptions that the baroclinic torque can be integrated over the bubble for

the duration of the interaction (e.g. Picone & Boris 1987 and Yang et al. 1994). Of the two

referenced models, the one due to Yang et al. appears to provide the better predictions. For a range

of interaction cases, it provides a vorticity prediction which is within 15% of that found by direct

simulation, while the Picone & Boris model is sometimes out by more than a factor of 2. Yang et al.

claim that the performance of their model stems from the fact that it retains the essential features

of a shock-bubble interaction. But our simulations indicate that this claim is debatable. Consider

the following observations on the vorticity produced by the helium bubble case.

Picone & Boris (1987) noted that the production of vorticity along the bubble interface appeared

to track the fastest moving shock wave, the uncertainty arose from the low resolution of their

computations. Our more detailed simulations show that this observation is essentially correct.

Most of the vorticity is produced where the side shock intersects the bubble interface, point a on

Figure 11. But a sizeable amount is also produced where the Mach stem crosses the interface, point

b on Figure 11. These observations were gleaned from surface plots of the baroclinic torque term,

for which there are just two localized spikes at the points a and b. However, over the leeward side of

the bubble only the side shock produces any signi�cant amount of vorticity: the Mach stem weakens

as it di�racts around the bubble and it eventually becomes too weak to generate much vorticity, see
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Figure 10 (f). Figure 15 shows two snapshots of the accumulated vorticity, cf. the surface plots of

the pressure and density �elds shown in Figure 10. Note that very little vorticity is generated due to

plain shock curvature. Also note that the distribution of vorticity is not symmetric. More vorticity

is deposited on the windward side of the bubble than on the leeward side.

The above observations undermine the assumptions upon which most vorticity prediction models

are based. By way of example, take the Yang et al. (1994) model. Since vorticity is predominantly

generated by the side shock, production e�ectively ceases once the transmitted wave emerges from

the bubble. Note that the incident shock has only traversed half the bubble by the time this

happens, see Figure 9 (c). But the model assumes that vorticity is generated continuously for the

time it takes the incident shock to traverse the bubble (i.e. twice as long as is necessary), thus

it might be expected to over predict the �nal amount of vorticity by a factor of 2. In part, this

overprediction is counteracted by the fact that on the windward side of the bubble there are two

major sources of vorticity production and not one as in the model. It is further assumed that the

pressure gradient responsible for the baroclinic torque remains constant throughout the interaction

and that it is equal to the jump across the incident shock. But this is not the case. Early on, the

relevant pressure jump is signi�cantly larger than that across the incident shock (see Figure 10 (a)),

while at later times it is signi�cantly smaller (see Figure 10 (f)). Other inaccuracies arise because

it is assumed that this pressure gradient always acts horizontally. In fact, in the heavy bubble case

it generally acts in a direction which is tangential to the bubble interface, see Figure 8 (b){(d).

In view of the complex nature of a shock-bubble interaction, it would seem that any set of

assumptions which are su�cient to yield a simple analytic expression for the vorticity are unlikely

to be justi�able at all moments of the interaction. In practice, the individual errors from the

separate assumption often partially cancel. Therefore, some models can provide reasonable vorticity

predictions albeit in a slightly fortuitous manner.

Figure 15: Surface plots of the magnitude of the vorticity �eld for the interaction of an

MS = 1:22 shock wave with an He cylindrical bubble. Times: (a) 32 �s, (e) 102 �s.
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9 Concluding Remarks

Our numerical results provide a comprehensive view of the complex phenomenological behaviour of

shock-bubble interactions. For example, in the case of a weak shock interacting with a heavy bubble,

they reveal the precise nature of the refracted shock front within the bubble and thereby identify

for the �rst time the cause of the shock thickening that was observed experimentally. Previous

computational e�orts to reveal this internal structure were marred by both a lack of grid resolution

and by numerical artifacts which interfered with the 
ow. Despite having only modest computing

resources, we were able to obtain the necessary high resolution by using a sophisticated adaptive

mesh re�nement algorithm. Here, we estimate that this algorithm led to between a forty and �fty-

fold decrease in computational e�ort. The actual computation time was further reduced by running

each simulation as a parallel computation on a small cluster of workstations. Additionally, we took

great care to avoid the numerical artifacts which generally plague multicomponent simulations. In

essence, we elected to su�er a small, controlled conservation error so as to avoid spurious oscillations

at material interfaces. Thus the present simulations are able to match their experimental counter-

parts both qualitatively and quantitatively, at least to the limits set by the physical model and by

experimental uncertainties.

Simulations of complex time-dependent phenomena usually prove di�cult to decipher, since

they generate huge amounts of data. Therefore, in part, the clarity of the present numerical study

rests with its careful use of computer graphics. For this paper we chose to present schlieren-type

images of the computed 
ow since they enable us to compare our results directly against experiment.

Such images are useful for identifying weak features which are often lost on contour plots and so

they provide a very e�ective means for assimilating the various mechanisms that comprise shock

refraction phenomena. We have also presented a number of realistically lit, surface plots which are

invaluable for gauging the strengths of individual 
ow features. Here, for example, they are used to

expose the weaknesses of current analytic models for predicting the amount of vorticity produced

by a shock-bubble interaction.

Finally, while the present computational machinery is capable of producing excellent results, it is

only fair to point out that it represents a considerable investment of e�ort. However, the machinery

is general purpose and so the large development costs can be defrayed. Looking to the future, we

hope to apply our machinery to other shock wave phenomena that are not yet fully understood,

preferably as part of a combined theoretical-numerical-experimental study.
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